

Transportation Electrification: New Technology Implications

U.S. Department of Energy Workshop Series An EV Future: Navigating the Transition August 13, 2020 Erika H. Myers

Clean + Modern Grid

Utility Business Models | Regulatory Innovation | Grid Integration | Transportation Electrification

Who Are We?

A membership organization

Founded in 1992

Staff of ~50 Budget of ~\$10M

Research, Education, **Collaboration & Standards**

Based in Washington, D.C.

Unbiased

No Advocacy – 501c3

Technology Agnostic

Pathways

Utility Business Models

Utilities actively engaging in new technologies and partnerships for sustainable value creation, as both Integrators and Accelerants for a clean energy future.

Regulatory Innovation

State regulatory processes to enable the timely and effective deployment of new technologies, partnerships and business models.

Grid Integration

Seamless integration of clean energy yielding maintained or improved levels of affordability, safety, security, reliability, resiliency and customer satisfaction.

Transportation Electrification

The nation's fleet of light, medium and heavy-duty vehicles powered by carbon-free electricity.

Leveraging advanced technology to support EV Infrastructure

- Co-location of EVSE with DERs
- 2. DERMS for EVSE aggregation
- 3. AMI for Residential EV Rates
- 4. Active Managed Charging Technologies
- 5. Microgrids for Fleet Electrification

Co-location of EVSE with DERs

Utility EV Program Development: Walk, Jog, Run

- Transportation
 electrification will require
 a reimagining of how
 utilities provide power
- Utility programs will depend on EV penetration, local/regional constraints, program goals, and prioritization
- Load management and co-location of DERs are essential as EVs scale

660

Utility EV Business Models

- Electricity cost-management services
- Utility-owned/sponsored co-location of DERs for EVSE

- Publish EVSE interconnection guidelines
- Publish hosting capacity maps for EVSE
- Dedicated technical support teams
- Integrate EV forecasts with IRPs and DRPs

■ Utility employee EV

rebate programs

■ Develop utility EV

Transportation

Electrification team

strategic plan

■ Develop a

EVSE Challenge: Long lead times & high energy service upgrade costs

Medium Voltage Service,

No Grid Upgrade

(up to 2 MW)

0-5

6-36

18-36

24-48

\$1,000-5,000	\$5,000-10,000	\$10,000-25,000	\$25,00
\$50,000-75,000	\$75,000-100,000	\$100,000+	

Table 3: Power Delivery Schedules					
Potential Power Delivery Upgrades	What is Involved	Typical Ranges (Months)			
No Distribution Circuit Upgrades (up to 1 MW)	Often, site loads below 1 MW can be supported with a new service transformer connected to the local distribution grid.	0-2			
Supply Conductor Upgrade, No Grid Upgrades (up to 1 MW)	The supply conductor upgrade may require replacement to serve the increased load. The service transformer may also be replaced with a larger size.	0-2			
	The manager may have to take primary service at medium voltage				

to allow for multiple service transformers (customer-owned)

transformer and low voltage switchboard ratings (typically around

behind the meter if the site load exceeds standard service

		3,000 A).			
	Grid Upgrade Deployment: Re-conductor or New Line Equipment (over 1 MW)	The overhead or underground wire may require upsizing to increase the load capacity and improve voltage regulation on the feeder if the charging load overloads the distribution circuit.			
	Substation Upgrade: New Transformer Bank (over 10 MW)	An overloaded transformer bank is either replaced by a larger bank in the substation or an additional bank is added.			
	New Substation (over 20 MW)	A new utility or dedicated high voltage substation may be required for very large installations.			
	Source: Black 9 Vestch 2010 Electric Floats: 9 Stone to Medium and Heavy Duty Float Electrification 28				

Source: Black & Veatch. 2019. Electric Fleets: 8 Steps to Medium and Heavy-Duty Fleet Electrification.²⁸

3 000 4)

Note: Example ranges—all power delivery scenarios are specific to a location, feeder access, existing, in queue projects and utility operating/ power provisioning standards, and available land/ right of ways.

Consider new utility business models

Source: Smart Electric Power Alliance, 2020. N=128

*Includes charging-as-a-service, DR/DSM, consulting services

Source: Smart Electric Power Alliance, 2020. N=128

DERMS for EVSE aggregation

EV aggregation via **DERMS**

4. DERMS to

Telematics to EV

DERMS: A hardware and software platform to monitor and control DERs in a manner that maintains or improves the reliability, efficiency, and overall performance of the electric distribution system.

2. DERMS to Microgrid/Building

EMS to EVSE (or EV)

- **Distribution Utility:** determines grid requirements; specific device or Group DER settings; communicates to DER
- DER/DER Aggregator: receives grid requirements; specific device or Group DER settings; communicates to DER; monitors and reports to DERMS
- Building EMS: receives grid requirements; determines how to implement; reports results to DERMS
- Charge Network Operator: receives grid requirements; determines how to implement; reports results to DERMS
- Source: Smart Electric Power Alliance, 2020.

1. DERMS to DR/DER Aggregator

to EVSE, EMS, CNO, to EVSE (or EV)

■ EV: with off-board, on-board or spilt inverter, uni- or bi-directions, AC or DC

3. DERMS to CNO

to EVSE

- **EVSE:** with off-board, on-board or split inverter, uni- or bi-directional, AC or DC
- **Telematics:** Vehicle Telematics System—receives grid requirements; determines how to use EVs to meet grid needs

EV Aggregation via DERMS (Cont'd)

Figure 4: Grid-EV Communications Architectures: Where Decisions Are Made

A. CA Rule 21 Model: End-Device Control

DERMS Direct End-Device Control

B. Smart Aggregation

Aggregator/Building EMS/CNO Smart Management

C. DR: Behavioral Incentives

DR Signals for Behavioral Incentives

D. Transactive Energy

Peer-Peer Transactions or Market Transactions

Source: Smart Electric Power Alliance, 2020.

Residential EV Rates: Metering Strategies

of Eligible

with AMI

Customers

Highest—

independent of

EVSE type

Source: Smart Electric Power Alliance, 2019. N=64 Note: The authors did not identify AMI vs. non-AMI meters.

		Existing Meter	Secondary Meter	Submeter	EVSE Telemetry	AMI Load Disaggregation
	Ability to Meter EV Charging Separately	No—Does not separate the EVSE from rest of load	Yes	Yes	Yes—Accuracy for billing purposes depends on EVSE manufacturer	Yes—Accuracy depends on ability to identify unique kW signature of EVSE
	Utility Bill Integration	Easiest to integrate	Easiest to integrate	Easier to integrate	Difficult to standardize among multiple vendors and retroactively integrate into billing system; data via AMI backhaul more accurate	Depending on the format of the disaggregated data, may not integrate
	Consumer Participation Cost	No additional cost	Depending on tariff, no up-front cost to consumer, or consumer pays for the full cost	Depending on tariff, no up-front cost to consumer, or consumer pays for the full cost	No additional cost if consumer already purchased the equipment; potential additional cost for compatible EVSE	Depending on tariff, some cost for administration, third-party costs, or equipment
	Volume	Highost	Highost	Highost		Highost

Highest—

independent of

EVSE type

Limited to eligible

EVSE vendors

Table 7: Pros and Cons of Different Metering Approaches

Highest—

independent of

EVSE type

Highest—

independent of

EVSE type

Active Load Management Strategies

- Vehicle Telematics
- EVSE
- Building Energy Management System (Adaptive Load Management)/ Microgrids
- On-board diagnostic interface (OBD-II port)
- Smart circuit breakers/ smart panels
- Smart plugs
- Meter collars
- Distributed ledgers/ transactive energy

Figure 3: Illustration of San Diego Gas and Electric Weekday "Timer Peak"

Source: MJ Bradley & Associates, 2017²⁴

Note: This is a rendition of the original graphic.

Microgrids for Fleet Electrification

Resilience, Reliability, and Demand Charge Management

COVID-19 INFECTION RATE CURVES

FLEET CHARGING ENERGY CURVES

Time of Charge During 24 Hour Period

Source: Smart Electric Power Alliance, 2020.

Proterra: Bus Depot Modeling

Bus Depot Space and Charging Layout

Microgrid Solar and Storage Layout

STREET LEGEND Pavement Employee Support Trailer 480V 2000A Switchgear with Meter **HECO Supply Transformer** MWH Stationary Storage (20' x 15') 51,505 sf

Source: Proterra, 2020.

Collaborative teams
of member SMEs
addressing important
industry issues

Working Groups

Community Solar

Customer Grid Edge

Cybersecurity

Electric Vehicles

Energy Storage

Grid Architecture

Microgrids

Testing and Certification

Transactive Energy Coordination

Principal, Transportation Electrification emyers@sepapower.org 202.379.1615

HEADQUARTERS

Smart Electric Power Alliance 1220 19th Street, NW, Suite 800 Washington, DC 20036-2405 202.857.0898

