

Transportation Electrification: New Technology Implications

U.S. Department of Energy Workshop Series An EV Future: Navigating the Transition August 13, 2020 Erika H. Myers

Clean + Modern Grid

Utility Business Models | Regulatory Innovation | Grid Integration | Transportation Electrification

Who Are We?

888

 $\bigotimes_{n=1}^{\infty} \bigotimes_{n=1}^{\infty}$

A membership organization

Founded in 1992

Staff of ~50 Budget of ~\$10M

Based in Washington, D.C. Unbiased Washington, D.C.

No Advocacy – 501c3

Research, Education, Collaboration & Standards

Pathways

Utility Business Models

Utilities actively engaging in new technologies and partnerships for sustainable value creation, as both Integrators and Accelerants for a clean energy future.

Regulatory Innovation

State regulatory processes to enable the timely and effective deployment of new technologies, partnerships and business models.

Grid Integration

Seamless integration of clean energy yielding maintained or improved levels of affordability, safety, security, reliability, resiliency and customer satisfaction.

Transportation Electrification

The nation's fleet of light, medium and heavy-duty vehicles powered by carbon-free electricity.

Leveraging advanced technology to support EV Infrastructure

Smart Electric Power Alliance

- 1. Co-location of EVSE with **DERS**
- 2. DERMS for EVSE aggregation
- 3. AMI for Residential EV Rates
- 4. Active Managed Charging **Technologies**
- 5. Microgrids for Fleet **Electrification**

Co-location of EVSE with DERs

Smart Electric Utility EV Program Development: Walk, Jog, Run Power Alliance

- Transportation electrification will require a reimagining of how utilities provide power
- Utility programs will depend on EV penetration, local/regional constraints, program goals, and prioritization
- Load management and co-location of DERs are essential as EVs scale

EVSE Challenge: Long lead times & high energy service upgrade costs

Smart Electric Power Alliance

Source: Black & Veatch. 2019. Electric Fleets: 8 Steps to Medium and Heavy-Duty Fleet Electrification.²⁸

\$25,000-50,000 Note: Example ranges—all power delivery scenarios are specific to a location, feeder access, existing, in queue projects and utility operating/ power provisioning standards, and available land/ right of ways.

 $$75,000-100,000$

 $\frac{1}{2}$ \$5,000-10,000

 \blacksquare \$1,000-5,000

 $\frac{1}{2}$ \$50,000-75,000

 $$100,000+$

 \blacksquare \$10,000-25,000

Consider new utility business models

Source: Smart Electric Power Alliance, 2020. N=128 *Includes charging-as-a-service, DR/DSM, consulting services Source: Smart Electric Power Alliance, 2020. N=128

DERMS for EVSE

aggregation

EV aggregation via DERMS

DERMS: A hardware and software platform to monitor and control DERs in a manner that maintains or improves the reliability, efficiency, and overall performance of the electric distribution system.

- **Building EMS:** receives grid requirements; determines how to implement; reports results to DERMS
- **Charge Network Operator:** receives grid requirements; determines how to implement; reports results to DERMS

Source: Smart Electric Power Alliance, 2020.

requirements; determines how to use EVs to meet grid needs

EV Aggregation via DERMS (Cont'd)

Figure 4: Grid-EV Communications Architectures: Where Decisions Are Made

A. CA Rule 21 Model: **End-Device Control DERMS Direct End-Device** Control

B. Smart Aggregation Aggregator/Building EMS/CNO

Smart Management **C. DR: Behavioral Incentives** DR Signals for Behavioral

Incentives

D. Transactive Energy

Peer-Peer Transactions or Market Transactions

Source: Smart Electric Power Alliance, 2020.

**EXAMPLE Smart Electric

Power Alliance

AMI for** a di Ba **Residential EV Rates**

Residential EV Rates: Metering Strategies

Customers

with AMI

EVSE vendors

EVSE type

EVSE type

EVSE type

EVSE type

A COMPREHENSIVE GUIDE TO ELECTRIC VEHICLE MANAGED CHARGING

spikes during off-peak hours. At the same time, managed are installing L2 chargers at home that have demands charging can smooth unintended TOU timer peaks. of 7.2 kW and higher. Seeking to mitigate these costs,
a Sacramento Municipal Utility District (SMUD) report .
Avoiding grid upgrades is potentially an even more
significant value for utilities. Even during the early days of found that managed charging reduced almost cost impacts of higher residential charging le V deployment, researchers with The EV Project identified loads up to 19.2kW, potentially saying he "clustering" trend, in which multiple EVs connected leads up to 19.2KV, potentially saving signifies
in transformer upgrades.¹⁴ The impact to the
idesgri, capacity, age, other customer loads
degree of clustering and overlap of EV char to a single distribution transformer caused strain on the ment.³¹ In some areas, this impact is even more ounced today, leading to a risk of triggering costly
ades to distribution equipment. More EV owners

Hill Smart Electric UTILITY INTEREST IN MANAGED CHARGING Given this projected growth in EVs and charging the total projects. This trend appears like infrastructure, it is not surprising that utilities are
evaluating managed charging. In fact, 38 utility-run
managed charging pilot and demonstration projects were a higher percentage of surveyed utilities
load control via the charging device (as s Load control via automaker telematics
stages of implementation and has very
projects—the majority of those identifie identified at the date of publication (see Appendix A). Of
these projects, the majority (26) were actively available
to customers, while one-third were implemented as pilot Behavioral load control largely includ or demonstration projects that are now complete and in the on-board diagnostic port (OBDwinus stages of evaluation or review. vehicle behavior and provide incentive **A Comprehensive** The projects were segmented between load control via the charge during off-peak hours. charging device, load control via the vehicle, and behavioral To gain additional clarity about utility-
load control as shown in Figure 2. The most popular type the right programs, SEPA administery
of managed charging proj **Guide to** Response Survey between January at
respondents, 53% were interested in ntrol via the charging device, representing 71% of FIGURE 3: UTILITY INTEREST IN
CHARGING PROGRAMS BY TEC **Electric Vehicle Managed Charging** n in **FRASTRUCTURE MAY 2019** EV CHARGING ACTIVE COMPLETED PLANNING twer Allance, 2019. See Appendix / .
What Clusterine Effects have been seen by The EV Project?, https://avt.inl.gov/sites/def ectric Vehicles: The Cose for Monaged Charging and SEPA, Black & Veetch, and

demand response programs and only 26% expressed no
interest (aggregated results from managed changing via
changing infrastructure and automaker telematics).¹¹
The survey revealed more utility interest in direct load

I via the charging infrastructure than through

WELL Smart Electric
Power Alliance

Utilities were also asked how they were using, or plannel

to use, managed charging as shown in Figure 5. The most
common planned use was to avoid higher cost periods
of energy (22%), followed by helping their customers
manage their energy use (21%) and increasing customer.

ELLEE Smart Electric **ELLE** Power Alliance <u> Tanzania de la pro</u> **Active Managed** Charging **Technologies**

Active Load Management Strategies

- **Vehicle Telematics**
- **EVSE**
- **Building Energy Management System** (Adaptive Load Management)/ **Microgrids**
- On-board diagnostic interface (OBD-II port)
- Smart circuit breakers/ smart panels
- **Smart plugs**
- **Meter collars**
- Distributed ledgers/ transactive energy

Figure 3: Illustration of San Diego Gas and Electric Weekday "Timer Peak"

Smart Electric Power Alliance Microgrids for Fleet Electrification

Resilience, Reliability, and Demand Charge Management

Distribution Management System **Electric Boundary** # of **Without Healthcare system capacity To Distribution Protective** cases Grid **Measures Point of Common With Protective** Coupling **Measures** Back-up Generation Time since first case **FLEET CHARGING ENERGY CURVES** Limited/ Non-Controllable Microgrid Generation Controller Controllable Load lectricity Demand (kW) **Without Charge Management (Worst Case) Controllable Generation Critical Load Grid infrastructure capacity With Charge Management Energy Storage**

Source: Smart Electric Power Alliance, 2020.

Time of Charge During 24 Hour Period

COVID-19 INFECTION RATE CURVES

Proterra: Bus Depot Modeling

Bus Depot Space and Charging Layout

LEGEND

Microgrid Solar and Storage Layout

Source: Proterra, 2020.

Collaborative teams of member SMEs addressing important industry issues

Working Groups

Community Solar

Customer Grid $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ Edge

Cybersecurity

 $\xrightarrow{\neq}$ Energy Storage

Grid Architecture

Microgrids

Testing and **Certification**

Electric Vehicles \overrightarrow{S} Transactive Energy **Coordination**

Erika Myers Principal, Transportation Electrification emyers@sepapower.org 202.379.1615

HEADQUARTERS

Smart Electric Power Alliance 1220 19th Street, NW, Suite 800
Washington, DC 20036-2405
202.857.0898